
The Three Software
Stacks Required for IoT
Architectures
IoT software requirements and how to implement them
using open source technology

A collaboration of the Eclipse IoT Working Group
September 2016	 (latest update: December 2017)

Contents

Introduction . 3

IoT Architectures . 5

Stack for Constrained Devices 6

Stack for Gateways . 6

Stack for IoT Cloud Platforms 7

Cross-Stack Functionality . 8

Key Characteristics for IoT Stacks 9

Open Source Technology for IoT 11

Open Source Stack for Constrained Devices 12

Open Source Stack for Gateways 12

Open Source Stack for IoT Cloud Platforms 14

Open Source for Cross-Stack Functionality 15

Conclusion . . 16

2 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

Contents

The Internet of Things (IoT) is transforming how individuals and
organizations connect with customers, suppliers, partners,
and other individuals. IoT is all about connecting sensors,

actuators, and devices to a network and enabling the collection,
exchange, and analysis of generated information.

Hardware innovations, like the Raspberry Pi, are making it easier,
faster and cheaper to develop new devices. Networking standards
for low power networks, like LoRaWAN or NB-IOT, create new op-
portunities for connecting very small devices to a network. New
standards are being developed specifically for IoT use cases, like
MQTT for messaging, OMA Lightweight M2M for device manage-
ment, or W3C Web of Things and oneM2M for service interoper-
ability. And finally, significant improvements in data storage, data
analysis, and event processing are making it possible to support
the amount of data generated in large-scale IoT deployments.

In parallel to the emerging IoT industry, the general software in-
dustry has moved towards open source as being a key supplier of
critical software components. The phrase “software is eating the
world” reflects the importance of software in general, but in real-
ity the software industry is now dominated by open source. This
is true for key software categories, including Operating Systems
(Linux), Big Data (Apache Hadoop, Apache Cassandra), Middleware
(Apache HTTP Server, Apache Tomcat, Eclipse Jetty), Cloud (Open-
Stack, Cloud Foundry, Kubernetes), and Microservices (Docker).

The purpose of this white paper is to look at the new technology
requirements and architectures required for IoT solutions. It will
identify three stacks of software required by any IoT solution, and
finally present how open source communities, such as the Eclipse
IoT community, are already supplying the critical software technol-
ogy needed by IoT solution providers. Similar to how the LAMP
(Linux/Apache HTTP Server/MySQL/PHP) stack has dominated the
web infrastructures, it is believed a similar open source stack will
dominate IoT deployments.

Introduction

“Software is eating the world”
	 – Marc Andreessen

Technology innovations in
hardware, networking and
software are fueling the
opportunity for new IoT
solutions and use cases

3 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

IoT Architectures
Devices, Gateways, and IoT Platforms

A typical IoT solution is characterized by many devices (i.e. things)

that may use some form of gateway to communicate through a

network to an enterprise back-end server that is running an IoT

platform that helps integrate the IoT information into the existing

enterprise. The roles of the devices, gateways, and cloud platform

are well defined, and each of them provides specific features and

functionality required by any robust IoT solution.

IoT Architectures

5 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

Stack for Constrained Devices

»» Sensors and Actuators

The “Thing” in the IoT is the starting point for an IoT solution. It
is typically the originator of the data, and it interacts with the
physical world. Things are often very constrained in terms of size
or power supply; therefore, they are often programmed using
microcontrollers (MCU) that have very limited capabilities. The
microcontrollers powering IoT devices are specialized for a specific
task and are designed for mass production and low cost.

The software running on MCU-based devices aims at supporting
specific tasks. The key features of the software stack running on
a device may include

1.	 IoT Operating System – many devices will run with ‘bare
metal’, but some will have embedded or real-time operating
systems that are particularly suited for small constrained
devices, and that can provide IoT-specific capabilities.

2.	 Hardware Abstraction – a software layer that enables
access to the hardware features of the MCU, such as flash
memory, GPIOs, serial interfaces, etc.

3.	 Communication Support – drivers and protocols allow-
ing to connect the device to a wired or wireless protocol like
Bluetooth, Z-Wave, Thread, CAN bus, MQTT, CoAP, etc., and
enabling device communication.

4.	 Remote Management – the ability to remotely control the
device to upgrade its firmware or to monitor its battery level.

Stack for Gateways

»» Connected and Smart Things

The IoT gateway acts as the aggregation point for a group of sen-
sors and actuators to coordinate the connectivity of these devices
to each other and to an external network. An IoT gateway can be
a physical piece of hardware or functionality that is incorporated
into a larger “Thing” that is connected to the network. For example,
an industrial machine might act like a gateway, and so might a
connected automobile or a home automation appliance.

An IoT gateway will often offer processing of the data “at the
edge” and storage capabilities to deal with network latency and
reliability. For device to device connectivity, an IoT gateway deals
with the interoperability issues between incompatible devices. A
typical IoT architecture would have many IoT gateways supporting
masses of devices.

Software stack for constrained devices

6 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

IoT Architectures

IoT gateways are becoming increasingly dependant on software
to implement the core functionality. The key features of a gateway
software stack include

1.	 Operating System – typically a general purpose operating
system such as Linux.

2.	 Application Container or Runtime Environment – IoT
gateways will often have the ability to run application code,
and to allow the applications to be dynamically updated.
For example, a gateway may have support for Java, Python,
or Node.js.

3.	 Communication and Connectivity – IoT gateways need
to support different connectivity protocols to connect with
different devices (e.g. Bluetooth, Wi-Fi, Z-Wave, ZigBee,
Thread). IoT gateways also need to connect to different types
of networks (e.g. Ethernet, cellular, Wi-Fi, satellite, etc.…)
and ensure the reliability, security, and confidentiality of
the communications.

4.	 Data Management & Messaging – local persistence to
support network latency, offline mode, and real-time analyt-
ics at the edge, as well as the ability to forward device data
in a consistent manner to an IoT Platform.

5.	 Remote Management – the ability to remotely provision,
configure, startup/shutdown gateways as well as the applica-
tions running on the gateways.

Stack for IoT Cloud Platforms

The IoT Cloud Platform represents the software infrastructure and
services required to enable an IoT solution. An IoT Cloud Platform
typically operates on a cloud infrastructure (e.g. OpenShift, AWS,
Microsoft Azure, Cloud Foundry) or inside an enterprise data
center and is expected to scale both horizontally, to support the
large number of devices connected, as well as vertically to address
the variety of IoT solutions. The IoT Cloud Platform will facilitate
the interoperability of the IoT solution with existing enterprise
applications and other IoT solutions.

The core features of an IoT Cloud Platform include

1.	 Connectivity and Message Routing – IoT platforms need
to be able to interact with very large numbers of devices
and gateways using different protocols and data formats,
but then normalize it to allow for easy integration into the
rest of the enterprise.

2.	 Device Management and Device Registry – a central
registry to identify the devices/gateways running in an IoT
solution and the ability to provision new software updates
and manage the devices.

3.	 Data Management and Storage – a scalable data store
that supports the volume and variety of IoT data.

Software stack for gateways

Software stack for IoT Cloud Platforms

7 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

IoT Architectures

4.	 Event Management, Analytics & UI – scalable event pro-
cessing capabilities, ability to consolidate and analyze data,
and to create reports, graphs, and dashboards.

5.	 Application Enablement – ability to create reports, graphs,
dashboards, … and to use API for application integration.

Cross-Stack Functionality

Across the different stacks of an IoT solution are a number of fea-
tures that need to be considered for any IoT architecture, including

1.	 Security – Security needs to be implemented from the
devices to the cloud. Features such as authentication, encryp-
tion, and authorization need be part of each stack.

2.	 Ontologies – The format and description of device data
is an important feature to enable data analytics and data
interoperability. The ability to define ontologies and meta-
data across heterogeneous domains is a key area for IoT.

3.	 Development Tools and SDKs – IoT Developers will require
development tools that support the different hardware and
software platforms involved.

8 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

IoT Architectures

Event Management,
Analytics & UI

There are some common characteristics that each IoT stack should
embrace, including:

Loosely coupled - Three IoT stacks have been defined but it
is important that each stack can be used independently of the
other stacks. It should be possible to use an IoT Cloud Platform
from one supplier with an IoT gateway from another supplier
and a third supplier for the device stack.

Modular - Each stack should allow for the features to be sourced
from different suppliers.

Platform-independent - Each stack should be independent of
the host hardware and cloud infrastructure. For instance, the
device stack should be available on multiple MCUs and the IoT
Cloud Platform should run on different Cloud PaaS.

Based on open standards - Communication between the stacks
should be based on open standards to ensure interoperability.

Defined APIs - Each stack should have defined APIs that allow
for easy integration with existing applications and integration
with other IoT solutions.

Key Characteristics for IoT Stacks

9 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

Open Source
Technology for IoT

The open source community has become an active producer of

technology for IoT solutions. Like the LAMP stack for websites, there

are a set of open source projects that can be used as the building

blocks for an IoT solution architecture.

The Eclipse IoT community is very active in providing the technology

that can be used in each stack of an IoT solution. Eclipse IoT has 26

different open source projects that address different features of the

IoT stacks. In addition to the Eclipse IoT projects, there are other

open source projects that are also relevant to an IoT stack. The next

few pages provide a brief summary of how Eclipse IoT as well as

other open source projects can be used to implement IoT stacks.

Open Source Technology for IoT

11 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

Open Source Stack for Constrained Devices

Eclipse IoT provides a set of libraries that can be deployed on a
constrained embedded device to provide a complete IoT develop-
ment stack.

•	 IoT Operating Systems – Contiki-NG, RIOT, FreeRTOS,
Zephyr, Apache Mynewt.

•	 Hardware Abstraction – Eclipse Edje provides an high-level
API for accessing hardware features provided by microcon-
trollers (e.g GPIO, ADC, MEMS, etc.). It can directly connect
to native libraries, drivers, and board support packages
provided by silicon vendors.

•	 Device Management – Eclipse Wakaama provides an
implementation of the OMA LWM2M standard.

•	 Communication – Open source projects like Eclipse Paho
or Eclipse Wakaama provide implementation of IoT com-
munication protocols such as, respectively, MQTT or LWM2M.

Open Source Stack for Gateways

Within the Eclipse IoT community there are a variety of projects
that work to provide the capabilities that an IoT gateway requires.

Eclipse Kura provides a general purpose middleware and appli-
cation container for IoT gateway services. An IoT gateway stack
based on Eclipse Kura would include the following:

•	 Operating System – Linux (Ubuntu/Ubuntu Core, Yocto-
based linux distribution), Windows.

•	 Application Container or Runtime Environment – Eclipse
Equinox or Eclipse Concierge (OSGi Runtime).

•	 Communication and Connectivity – Eclipse Kura includes
APIs to interface with the gateway I/Os (e.g. Serial, RS-485,
BLE, GPIO, etc.) and support for many field protocols that can
be used to connect to devices, e.g MODBUS, CAN bus, etc.

•	 Network Management – Eclipse Kura provides advanced
networking and routing capabilities over a wide-range of
interfaces (cellular, Wi-Fi, Ethernet, etc.).

•	 Data management & Messaging – Eclipse Kura implements
a native MQTT-based messaging solution, that allows applica-
tion running on the gateway to transparently communicate
with a Cloud Platform, without having to deal with the avail-
ability of the network interfaces, or how to represent IoT
data. Support for additional messaging protocols is available
through the built-in Apache Camel message routing engine.

•	 Remote management – Eclipse Kura provides a remote
management solution based on the MQTT protocol, that
allows to monitor the overall health of an IoT gateway, in

12 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

Open Source Technology for IoT

https://projects.eclipse.org/projects/iot.edje
https://projects.eclipse.org/projects/iot.wakaama
https://eclipse.org/paho
https://projects.eclipse.org/projects/iot.wakaama
https://eclipse.org/kura
https://eclipse.org/kura
https://eclipse.org/kura
https://eclipse.org/kura
https://eclipse.org/kura
https://projects.eclipse.org/projects/iot.edje
https://eclipse.org/kura
https://eclipse.org/paho

addition to control (install, update, modify settings) the
software it’s running.

Eclipse SmartHome provides an IoT gateway platform that is
specifically focused on the home automation domain. An Eclipse
SmartHome stack would including the following:

•	 Operating System – Linux (Ubuntu/Ubuntu Core, Yocto-
based linux distribution), Windows or macOS.

•	 Application Container or Runtime Environment – Eclipse
Equinox or Eclipse Concierge (OSGi Runtimes).

•	 Communication and Connectivity – Eclipse SmartHome
brings support for many off-the-shelf home automation
devices such as Belkin WeMo, LIFX, Philips Hue, Sonos, etc.
Eclipse SmartHome focuses on enabling home automation
solutions to communicate within an “Intranet of Things” ;
therefore offline capabilities are a paramount design goal.

•	 Data Management & Messaging – Eclipse SmartHome has
an internal event bus, which can be exposed to external
systems through e.g. SSE or MQTT. It furthermore provides
mechanisms for persisting values in databases and for run-
ning local business logic through a rule engine.

•	 Remote Management – Eclipse SmartHome supports device
onboarding and configuration through its APIs. It furthermore
provides an infrastructure to perform firmware update of
connected devices.

Eclipse 4DIAC provides an industrial-grade open source infrastruc-
ture for distributed industrial process measurement and control
systems based on the IEC 61499 standard. 4DIAC is ideally suited
for Industrie 4.0 and Industrial IoT applications in a manufactur-
ing setting.

The IEC 61499 standard defines a domain specific modeling lan-
guage for developing distributed industrial control solutions by
providing a vendor independent format and for simplifying support
for controller to controller communication.

13 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

Open Source Technology for IoT

https://eclipse.org/smarthome
https://eclipse.org/equinox
https://eclipse.org/equinox
https://eclipse.org/concierge
https://eclipse.org/4diac
https://eclipse.org/smarthome
https://eclipse.org/4diac

Open Source Stack for IoT Cloud Platforms

The Eclipse IoT Community has a number of projects that are focused
on providing the functionality required for IoT cloud platforms.

Eclipse Kapua is a modular platform providing the services required
to manage IoT gateways and smart edge devices. Kapua provides
a core integration framework and an initial set of core IoT services
including a device registry, device management services, messaging
services, data management, and application enablement.

The goal of Eclipse Kapua is to create a growing ecosystem of
micro services through the extensions provided by other Eclipse
IoT projects and organizations.

Eclipse OM2M is an IoT Platform specific for the telecommunica-
tion industry, based on the oneM2M specification.

It provides a horizontal Common Service Entity (CSE) that can be
deployed in an M2M server, a gateway, or a device. Each CSE pro-
vides Application Enablement, Security, Triggering, Notification,
Persistency, Device Interworking, Device Management.

The Eclipse IoT community also has a number of standalone projects
that provide functionality to address key features required for an
IoT cloud platform. These projects can be used independently of
Eclipse Kapua and over time some may be integrated into Kapua.

»» Connectivity and Protocol Support

•	 Eclipse Hono provides a uniform API for interacting with
devices using arbitrary protocols, as well as an extensible
framework to add other protocols.

•	 Eclipse Mosquitto provides an implementation of an MQTT
broker.

»» Device Management & Device Registry

•	 Eclipse Leshan provides an implementation of the OMA
LWM2M device management protocol.

•	 Eclipse hawkBit provides the management tools to roll out
software updates to devices and gateways.

14 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

Open Source Technology for IoT

https://eclipse.org/kapua
https://eclipse.org/om2m
https://eclipse.org/hono
https://eclipse.org/mosquitto
https://eclipse.org/leshan
https://projects.eclipse.org/projects/iot.hawkbit
https://eclipse.org/kapua
https://eclipse.org/om2m

»» Event Management & Application Enablement

•	 Eclipse Hono helps to expose consistent APIs for consum-
ing telemetry data or sending commands to devices, so as
to rationalize IoT application development.

•	 Eclipse Ditto provides a unified resource-based API that
can be used to abstract real-world devices.

»» Analytics and Visualization

•	 Outside of the Eclipse IoT community there are many open
source options for data analytics and visualization, including
Apache Hadoop, Apache Spark, and Apache Storm.

•	 Within the Eclipse community, Eclipse BIRT provides support
for dashboards and reporting of data stored in a variety of
data repositories.

Open Source for Cross-Stack Functionality

»» Security

•	 Eclipse tinydtls provides an implementation of the DTLS
security protocol, providing transport layer security between
the device and server.

•	 Eclipse Keti provides an access control service that allows
each stack in an IoT solution to protect their resources using
a RESTful interface.

»» Ontologies

•	 Eclipse Unide is a protocol for Production Performance Man-
agement (PPM) in the manufacturing industry. It establishes
an ontology for sharing machine performance information.

•	 Eclipse Whiskers implements the OGC SensorThings API
that provides a standard way to share location based infor-
mation for devices.

»» Development Tools and SDKs

•	 Eclipse Vorto provides a set of tools and repository for
creating device information models.

•	 Eclipse JDT and Eclipse CDT allow for integrated development
of IoT solutions. For example, Eclipse Kura applications can be
tested and debugged from within the Eclipse Java IDE (JDT).

•	 Eclipse Che provides a browser-based IDE that can be used
for building IoT solutions.Open Source Stack for IoT Cloud
Platforms.

15 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

Open Source Technology for IoT

https://eclipse.org/hono
https://eclipse.org/ditto
https://eclipse.org/birt
https://projects.eclipse.org/projects/iot.tinydtls
https://eclipse.org/unide
https://eclipse.org/whiskers
https://eclipse.org/vorto
https://eclipse.org/jdt
https://eclipse.org/cdt
https://eclipse.org/che

An IoT Solution requires substantial amount of technology in the
form of software, hardware, and networking.

In this white paper we have defined the software requirements
across three different stacks. For the IoT industry to be successful,
it needs to enable more than a succession of independent silos
designed by one vendor that address just one business case at the
same time. As examples, a connected car comprises MCUs from
many different vendors, and a smart city or a smart factory will
have a wide variety of sensors and gateways, and an even wider
variety of companies looking at building end applications, etc.

The last twenty years have proven that open source software and
open source communities are key providers of technology for the
software industry. The Internet of Things is following a similar
trend, and it is expected that more and more IoT solutions will be
built on open source software.

For the past six years, the Eclipse IoT community has been very ac-
tive in building a portfolio of open source projects that companies
and individuals use today to build their IoT solutions.

If you are interested in participating, please
join us and visit https://iot.eclipse.org.

Conclusion

16 Copyright (c) 2016-2017, Eclipse Foundation, Inc. | Made available under the Eclipse Public License 2.0 (EPL-2.0)

https://iot.eclipse.org

https://iot.eclipse.org

https://iot.eclipse.org

